The basin and range landscape at the northern extent of the intermontane Great Basin is dominated by volcanic uplands, sediment-filled pluvial lake basins, and a High Desert sagebrush steppe ecosystem. The northern perimeter of this High Desert region is marked by the Blue Mountains and Owyhee uplands of central and eastern Oregon, which separate the internally draining basins to the south from the headwaters of the Columbia River system to the north.

The basketry from this Northern Great Basin region, initially termed by Adovasio (1970) as the “Oregon Complex,” is overwhelmingly twine ware. In his comprehensive study of basketry in the far west more than 40 years ago, Adovasio (1970) found that less than 2 percent of basketry in this Northern Great Basin basketry center (primarily southeast Oregon and bordering portions of California, Nevada, and Idaho) was coiled. The rarity of coiling in the Northern Great Basin is noteworthy, in light of the rich coiled basketry traditions in California, the Western Great Basin, the Eastern Great Basin, Idaho, and the Columbia Plateau of Washington (Bates and Bernstein 1982; Fulkerson and Curtis 1995; Kuneki et al. 1982; Schlick 1994).

Although the archaeological basketry specimens known from southeast Oregon sites number in the thousands, fewer than 20 fragments of coiled basketry have been reported. These specimens include a dozen fragments recovered by Cressman (1942) from Catlow and Roaring Springs caves, three fragments reported by Adovasio et al. (1986) from Dirty Shame Rockshelter, possible fragments from Antelope Overhang on the Owyhee River near the Idaho border (Plager et al. 2006), and a single fragment from Warner Valley reported by Fowler and Cannon (1990, 1992).

In the Great Basin’s Eastern Basin Basketry Region, coiling dates to more than 8,000 years ago, and it is found in the Western Region by 4,500 years ago. In the Northern Great Basin, archaeological basketry is dominated by twine ware; fewer than 20 fragments of coiled basketry have been reported. Coiling has long been thought to have appeared very late in the Northern Basin, and the perceived late presence of coiling in the north has been considered by some to be an indicator of a late Numic incursion from the south. Recent direct radiocarbon dating of fiber samples from the coiled specimens from the Northern Great Basin undermines the previous assumptions of a uniformly late age. Though rare, coiling has a consistent presence in the region for more than 2,500 years. Further, its distribution suggests that this technological influence may have derived primarily from eastern, rather than southern, sources.

Coiled basketry dates to more than 8,000 years ago in the Eastern Great Basin and is found in the Western Basin by 4,500 years ago. In the Northern Great Basin, archaeological basketry is dominated by twine ware; fewer than 20 fragments of coiled basketry have been reported. Coiling has long been thought to have appeared very late in the Northern Basin, and the perceived late presence of coiling in the north has been considered by some to be an indicator of a late Numic incursion from the south. Recent direct radiocarbon dating of fiber samples from the coiled specimens from the Northern Great Basin undermines the previous assumptions of a uniformly late age. Though rare, coiling has a consistent presence in the region for more than 2,500 years. Further, its distribution suggests that this technological influence may have derived primarily from eastern, rather than southern, sources.
coiling occurs later in the Northern Region and could have spread from either source area. Jolie and Hattori (2005) suggest that coiling first spread to the Western Region from the east and then to the Northern Region from the south; demonstrable connections between these two regions are evident in other fiber artifacts, most notably Catlow Twine basketry and a specific type of twined sandal known as the Multiple Warp type (Connolly and Barker 2008; Cressman 1942; Fowler and Hattori 2011; Hattori and Fowler 2009). Though they did not suggest the Snake River Plain of southern Idaho as a route of entry to southeast Oregon, Adovasio et al. describe basketry from this area that “fits comfortably and conformably within the general milieu of Fremont basketry” of the Eastern Basin (1982:24). The Snake River, which borders Oregon on the east, was a well-traveled corridor after the reintroduction of the horse (Stern 1998) and likely was in more ancient times as well.

Coiling has long been thought to have appeared very late in the Northern Great Basin. In his 1942 monograph, Cressman described the 12 fragments from Catlow and Roaring Springs caves as being recovered “from the surface or immediately under it” (1942:46). Adovasio et al. (1986:23) report that the three Dirty Shame Rockshelter fragments were all from the most recent occupation levels, identified as Zone I. Fowler and Cannon (1992) report on a fragment of coiled basketry from South Warner Cave that was radiocarbon dated to within the last 300 years and may date from postcontact times. Based on the apparently consistent very late appearance of coiled basketry in the Northern Great Basin, several researchers (most notably Adovasio and various collaborators, e.g., Adovasio 1986a; Adovasio and Andrews 1986; Adovasio and Pedler 1994; Adovasio et al. 1986) have suggested its presence to be an indicator of a late Numic incursion from the south (Madsen and Rhodes 1994).

Recent direct radiocarbon dating of fiber samples from the coiled specimens in question underlines the previous assumptions of a uniformly late age for coiling in the Northern Great Basin. Although rare, coiled basketry has a persistent presence in the region for more than 2,500 years. Further, the distribution of coiled specimens suggests that this technological influence may have derived primarily from eastern, rather than southern, sources.

The Sites

Coiled basketry has been recovered from five southeast Oregon caves. Dirty Shame Rockshelter and Antelope Overhang are technically outside of the hydrologic Great Basin but within an area commonly considered to be within the Great Basin cultural sphere (d’Azevedo 1986). Both are located along Antelope Creek, an Owyhee River tributary that flows northerly to the Snake River.

Antelope Overhang was excavated in 1969; the collection and field notes were initially curated at the Idaho Museum of Natural History, where Adovasio (1970) first examined the perishable assemblage. A more comprehensive report on the collection was produced in 2006 (Plager et al. 2006), prior to the material being transferred to the State Museum of Anthropology at the University of Oregon.

The deeply stratified Dirty Shame Rockshelter was excavated in 1973, producing a perishable assemblage spanning some 10,000 years. The fiber structures included 250 twined specimens (mats, bags, baskets, and sandals) and three fragments of coiled basketry (Aikens et al. 1977; Andrews et al. 1986).

Excavations at Catlow and Roaring Springs caves were conducted from 1935 to 1938 by Luther Cressman (1942). These sites are located about 38 km from one another on the east side of the Catlow Valley near the western toe of Steens Mountain. Over 250 woven specimens (basketry, sandals, matting) were recovered from Catlow Cave, among which eight fragments of coiling were identified. Roaring Springs produced over 300 basketry specimens, of which four were coiled (Connolly 1986).

South Warner Cave (35LK94) is located at the southwest edge of Warner Valley. Artifacts from the site were acquired by illicit excavation and were confiscated by the Bureau of Land Management following successful prosecution of an antiquities violation in the late 1980s. The assemblage included nine fragments of twined and one coiled basket fragment (Fowler and Cannon 1990).
The Specimens: Attributes and Ages

The dated specimens reported here have been described elsewhere (Adovasio et al. 1986; Cressman 1942; Fowler and Cannon 1992; Plager et al. 2006) and are briefly reviewed here with their associated radiocarbon ages (Table 1). The original analysts sometimes employed different terminology in their descriptions, and in a few cases my observations vary from those in the earlier reports. Cressman did an initial classification for the Roaring Springs and Catlow Cave specimens before sending them to Gene Weltfish for her analysis; this information (including divergent classifications of foundation structures by Cressman and Weltfish) is summarized in Cressman 1942:51.

Some of the undated fragments enumerated in Table 1 (56-1-3232, 404-D2-4/1-B6a, and 1325-416) appear—based on structural similarities and recovery proximity—to be parts of vessels from which other fragments were dated (56-1-3231, 404-D2-4/1-B6b, and 1325-34, respectively). Specimens 1-2120 and 1-3479, recovered from Catlow Cave in different years, have indistinguishable ages, are structurally similar, and may be from the same vessel. However, at most sites where multiple fragments were present, the dating results confirm the presence of different vessels of varying age.

Some consistent features are noted in this small assemblage of coiled basketry, including the use of interlocking stitches and a predominantly right-to-left work direction, but there is a notable diversity of other structural attributes. Thus, I have not attempted to organize the specimens into types; they are ordered more or less chronologically and described individually.

Specimen 35KL94-16, from South Warner Cave, has interlocking stitches, a left-to-right work direction from the interior surface, and occasional split stitches on the exterior surface. It was coated with a dark organic substance, probably cooking residue (Fowler and Cannon 1990, 1992). It was originally reported to have a mixed split rod and bundle foundation, but based on my examination it appears to have a grass bundle foundation. The bundle foundation and left-to-right work direction are unique in the present set; it is also the fragment with the youngest reported radiocarbon age (80 ± 55 B.P. [Eiselt 1997:110]).

Specimen 48-1-2190, removed from Catlow Cave in 1935, has a three-rod foundation (one large and two smaller satellite rods); stitches split the larger rod. I assessed the work surface as indeterminate, but Weltfish (cited in Cressman 1942:51) reported an interior work face for this specimen. Work direction is right to left. The interior is coated with pitch, and a few stitches on this surface are split. A fragment of the stitching element returned an age of 510 ± 41 B.P. (AA-66187).

Cressman (1942) made an initial description of foundation and stitching features for Catlow Cave specimens 56-1-2996, 56-1-2987, and 56-1-3616 (all recovered in 1937) before sending them on to Weltfish for further analysis. Due to their small and fragmentary condition, she could not determine work surface or work direction. This limitation remained unaltered in my recent examination, and I will rely on Cressman’s original reporting. He (1942:51) observed that specimen 56-1-2996 had a stacked rod and welt foundation, with split stitches on one side; a fiber fragment returned an age of 1005 ± 36 B.P. (AA-66190). Specimen 56-1-2987 was described by Cressman as having a three-rod foundation, with stitches split on one side. A fiber fragment returned an age of 1900 ± 83 B.P. (Beta-240511). Specimen 56-1-3616 was reported as having a two-rod and welt foundation and split stitches; a fiber sample returned an age of 1286 ± 83 B.P. (AA-66192).

Specimen 56-1-8818 came from Roaring Springs Cave in 1937. It has a two-rod (one large, one small) horizontal foundation; stitches split the larger rod. It has an exterior work surface and a right-to-left work direction. Stitches were intentionally split on the interior surface, which Cressman (1942:51) reported as a decorative feature. A fiber sample dated to 1297 ± 42 B.P. (AA-66194).

The Dirty Shame Rockshelter perishable assemblage was reported by Andrews et al. (1986). The fragments shown in Figure 1m and 1n were given the same catalog number (404-D2-4/1-B6a and b), as they were thought to be from a single basket. Nonetheless, Adovasio et al. (1976:3–4) assigned these two fragments to different types: one described as having a whole-rod foundation, accidental splitting of interlocking stitches, and right-to-left work direction (his Type IX); the other as having a half-rod foundation, no splitting of interlocking stitches, and left-to-right work di-
Table 1. Coiled Basketry from the Northern Great Basin.

<table>
<thead>
<tr>
<th>Catalog #</th>
<th>14C Lab #</th>
<th>14C Age</th>
<th>Calibrated Years BP</th>
<th>Site/Accession No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previously Reported 14C Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35L K94-16</td>
<td>AA-6482</td>
<td>80 ± 55</td>
<td>260 (260-0) 0</td>
<td>S. Warner Cave</td>
<td>Mixed rod and bundle foundation (Fowler and Cannon 1992)</td>
</tr>
<tr>
<td>New 14C Dates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-1-2190</td>
<td>AA-66187</td>
<td>510 ± 41</td>
<td>550 (530) 510 BP</td>
<td>Catlow Cave</td>
<td>Whole rod foundation (3-rod triangular), pitched, split on one side</td>
</tr>
<tr>
<td>56-1-2996</td>
<td>AA-66190</td>
<td>1005 ± 36</td>
<td>950 (930) 920 BP</td>
<td>Catlow Cave</td>
<td>Whole rod and welt vertical foundation, split stitch (rod-and-slat vertical, split on one side, burned on other)</td>
</tr>
<tr>
<td>100BP-1-3616</td>
<td>AA-66192</td>
<td>1286 ± 83</td>
<td>1290 (1260-1190) 1090 BP</td>
<td>Catlow Cave</td>
<td>Two-rod and slit triangular foundation</td>
</tr>
<tr>
<td>56-1-8818</td>
<td>AA-66194</td>
<td>1297 ± 42</td>
<td>1290 (1260) 1180 BP</td>
<td>Roaring Springs</td>
<td>Two-rod and slat foundation (two-rod horizontal), stitch split on inside</td>
</tr>
<tr>
<td>404-D2-4/1-B6b</td>
<td>AA-66196</td>
<td>1331 ± 43</td>
<td>1290 (1280) 1190 BP</td>
<td>Dirty Shame RS</td>
<td>Whole rod foundation, interlocking stitch (DRS Type VIII)</td>
</tr>
<tr>
<td>1325-34</td>
<td>Beta-249778</td>
<td>1760 ± 40</td>
<td>1720 (1700) 1620 BP</td>
<td>Antelope Overhang</td>
<td></td>
</tr>
<tr>
<td>48-1-2120</td>
<td>AA-66189</td>
<td>1850 ± 42</td>
<td>1860 (1820) 1710 BP</td>
<td>Catlow Cave</td>
<td>One rod foundation, interlocking stitch, rod split by stitch</td>
</tr>
<tr>
<td>56-1-3479</td>
<td>Beta-249774</td>
<td>1850 ± 40</td>
<td>1830 (1810) 1720 BP</td>
<td>Catlow Cave</td>
<td>One-rod foundation, interlocking stitch, rod split by stitch</td>
</tr>
<tr>
<td>56-1-2987</td>
<td>Beta-240511</td>
<td>1900 ± 40</td>
<td>1880 (1860) 1820 BP</td>
<td>Catlow Cave</td>
<td>Three-rod triangular foundation, split stitch on one side</td>
</tr>
<tr>
<td>56-1-3231</td>
<td>AA-66191</td>
<td>2022 ± 46</td>
<td>2040 (1990-1950) 1900 BP</td>
<td>Catlow Cave</td>
<td>Rod-and-slat horizontal foundation, interlocking stitch</td>
</tr>
<tr>
<td>404-C2-1s-2</td>
<td>AA-66195</td>
<td>2217 ± 38</td>
<td>2330 (2300-2160) 2150 BP</td>
<td>Dirty Shame RS</td>
<td>Two-rod and welt bunched foundation, non-interlocking stitch) Type X</td>
</tr>
<tr>
<td>60-1-8623b</td>
<td>AA-66193</td>
<td>2471 ± 51</td>
<td>2710 (2710-2490) 2360 BP</td>
<td>Roaring Springs</td>
<td>Three rod and slat foundation, split stitch (three-rod triangular, stitch split on outside, top rod split)</td>
</tr>
<tr>
<td>Undated Coiled Basketry from Northern Great Basin Sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-1-8885</td>
<td>not dated</td>
<td>—</td>
<td>—</td>
<td>Roaring Springs</td>
<td>Two- or three-rod vertical foundation, pitch-covered</td>
</tr>
<tr>
<td>60-1-8088</td>
<td>not dated</td>
<td>—</td>
<td>—</td>
<td>Roaring Springs</td>
<td>Three-rod triangular, split stitch on outside, pitch-covered</td>
</tr>
<tr>
<td>404-D2-4/1-B6a</td>
<td>see D2-4/1-B6b</td>
<td>—</td>
<td>—</td>
<td>Dirty Shame RS</td>
<td>Half rod foundation, interlocking stitch (DRS Type IX)</td>
</tr>
<tr>
<td>56-1-3232</td>
<td>see 1-3131</td>
<td>—</td>
<td>—</td>
<td>Catlow Cave</td>
<td>Two-rod horizontal foundation, some split stitches</td>
</tr>
<tr>
<td>1325-416</td>
<td>see 1325-34</td>
<td>—</td>
<td>—</td>
<td>Antelope Overhang</td>
<td></td>
</tr>
</tbody>
</table>
rection (his Type X). I reexamined these pieces, and they are structurally identical, both conforming to Adovasio’s Type IX: whole-rod foundation, right-to-left work direction, interior work surface, interlocking stitches, and stitches occasionally split on the exterior surface. These fragments are likely from a single vessel, as originally assumed, and only one of the fragments (404-D2-4/1-B6b) was dated: 1331 ± 43 B.P. (AA-66196).

Recently, Plager et al. (2006) have reported on materials excavated from Antelope Overhang, located near Dirty Shame Rockshelter in extreme southeast Oregon. The excavations took place in the late 1960s, principally by Robert Butler. The perishables were discussed by Adovasio (1970, 1986b) in several publications, but a comprehensive document on the site had not been produced. Plager et al. (2006) report a single piece of coiled

Figure 1. Coiled basketry from Oregon Caves in the Northern Great Basin. Roaring Springs Cave: (a) 60-1-8818; (b) 60-1-8885; (c) 60-1-8088; (d) 60-1-8623b. Catlow Cave: (e) 48-1-2190; (f) 48-1-2120; (g) 56-1-2987; (h) 56-1-3231; (i) 56-1-3232; (j) 56-1-3479; (k) 56-1-3616; (l) 56-1-2996. Dirty Shame Rockshelter: (m) 404-D2-4/1-B6a; (n) 404-D2-4/1-B6b; (o) C2-1/s-2. South Warner Cave: (p) 35KL94-16.
basketry, but I examined the piece and found it to be clearly twined. However, they also report on two fragments (1325-34 and 1325-416) described as “basketry rings” made by a wrapping and stitching technique that mimics coiling (Figure 2). These fragments are conjoinable and thus represent a single structure. Specimen 1325-34 has been recently dated, returning an age of 1760 ± 40 B.P. (Beta-249777; δ¹³C = −27.5‰). Similar rings have been reported from Dirty Shame Rockshelter (Andrews et al. 1986:157) and Catlow Cave (Cressman 1942:Figures 93–94), although in both of these cases they appear to be simply wrapped rather than stitched, as are those from Antelope Overhang. Both Andrews et al. (1986) and Cressman (1942) describe these “button-like” structures as probable gaming pieces.

Fragment 48-1-2120 was recovered by Cressman from the surface of Catlow Cave in 1935. It has a single whole-rod foundation, interlocking stitches that pierce the rod, and a right-to-left work direction. This fragment has a more pronounced curvature than other specimens, possibly indicating that the vessel it came from was bowl-shaped rather than tray-shaped. I assessed the work surface as indeterminate, but Weltfish (cited in Cressman 1942:51) noted it as exterior, presumably due to the curvature (cf. Adovasio 2010:82). A fiber sample from this specimen returned an age estimate of 1850 ± 42 B.P. (AA-66189).

Fragments 56-1-3231 and 56-1-3232 came from Catlow Cave in 1937. Cressman (1942:46) reported that they were recovered during screening of material from the site’s lower levels but noted the presence of surface debris, which had collapsed into the excavation, and the proximity of an apparent cache pit feature excavated into the site’s lower levels that made their provenience questionable. They are structurally identical, and Cressman considered 1-3231 and 1-3232 to be fragments of a single piece. Both have a two-rod (one large, one small) foundation, and stitches split the larger rod. Weltfish (cited in Cressman 1942:51) assessed the work surface as interior; the work direction is right to left. Stitches on the exterior surface are commonly (but not uniformly) split. Specimen 1-3231 returned an age of 2022 ± 46 B.P. (AA-66191).

Specimen 56-1-3479 also came from Catlow Cave in 1937, from the same poorly provenenced locality as the previously discussed fragments, and Cressman noted that it was similar in general appearance. However, it does not match in structure, being built on a single-rod foundation. The work direction was right to left, and stitches pierce the rod. I assessed the work surface as indeterminate, but Weltfish (cited in Cressman 1942:51) had reported this specimen as worked from the exterior surface. A fiber fragment returned an age of 1850 ± 40 B.P. (Beta-2497774; δ¹³C = −24.1‰).

A small fragment of coiled basketry (404-Cs-1s-2) from Dirty Shame Rockshelter returned an age estimate of 2217 ± 38 B.P. (AA-66195). It was described by Andrews et al. (1986) as close coiling, with a two-rod and welt bunched foundation and a noninterlocking stitch; I reexamined this piece and found it to have a three-rod foundation (one large, two small), with interlocking stitches that pierce the larger rod. The work direction was right to left, the work surface was exterior, and stitches are split on the interior.

Specimen 60-1-8623b is from Roaring Springs Cave, found during Cressman’s 1938 excavation. It has a three-rod triangular foundation (one large, two small), and stitches split the larger rod. The
work surface was interior, the work direction is right to left, stitches are split on the exterior face, and the interior surface exhibits some charring. This is the oldest directly dated coiled basketry from the Oregon caves, at 2471 ± 51 B.P. (AA-66193).

Specimen 60-1-8088 was recovered from Roaring Springs Cave in 1938. It has a three-rod foundation, and stitches pierce the larger rod. The work direction is right to left, stitches have been uniformly split on the exterior face, and charring is evident on the interior work surface. This piece was thickly coated with an unknown preservative substance after its recovery; it was not sampled for dating.

Specimen 1-8885 is a somewhat crudely made basket fragment that has been coated with pitch. The foundation has sets of two and three whole rods stacked vertically. Stitches interlock; the work direction and work surface are indeterminate. This fragment has also been heavily coated in an unknown preservative substance and was not sampled for dating.

Discussion

The 18 coiled basketry fragments from the Northern Great Basin probably represent just 14 different vessels. Among this small assemblage, multiple examples of three-rod triangular, single whole-rod, and two-rod horizontal foundations are present; and single occurrences of whole-rod and welt, two- and three-rod stacked, and bundle foundations occur. Stitches may be unsplit or incidentally or systematically split, usually on the nonwork surface (cf. Adovasio 1970:7). The only patterns that could be considered consistent or predominant are a right-to-left work direction and the use of interlocking stitches. Given the range of structural types represented in these few fragments, I concur with Adovasio’s observation that “few generalities can be made about [the Oregon coiling]” (1980:343).

Because basketry is a highly plastic medium, the execution of which is greatly influenced by cultural learning, it has been considered to link strongly with ethnic identity. With ethnographic basketry, a practiced eye can readily distinguish Klamath basketry from Klickitat, Makah from Maidu, and so on. Thus, the rarity of coiling in Oregon marks this technique as exotic, as the product of nonlocal traditions. This fact, along with the perception that coiling occurred very late in local cultural sequences, has made it a natural candidate to be considered evidence for a late cultural incursion. Indeed, it has been presented as evidence in support of a late Numic presence in the Northern Great Basin, a view articulated most enthusiastically by Adovasio and various coauthors. Adovasio et al. tell us that “the coiling definitely leads to the conclusion that at least the Zone I perishables [from Dirty Shame Rockshelter] are the products of one or more populations of Late Prehistoric or Protohistoric Numic speakers” (1986:33). In a later work, Adovasio and Pedler tell us:

We believe that the coiling types are Numic in ascription and signal the arrival of the Northern Numic speakers (probably in the “person” of the Northern Paiute) to the study area. . . . Significantly, all other Northern Great Basin coiling is confined to the post–A.D. 800–900 period and is very similar in most respects to that reported for Dirty Shame Rockshelter [1994:121].

On one hand, Adovasio has argued that the Northern Great Basin coiling is entirely consistent with Northern Paiute basketry and must represent a Numic presence. On the other, he (1980:343) explicitly notes the exceptional technological variety in the fragments of 15 or so coiled vessels from the region, rendering the Northern Paiute attribution a question that has not been satisfactorily resolved (e.g., Cressman 1942:138).

Fowler has observed that “a total constellation of features might serve to differentiate one form from another ethnically, but if recovered archaeologically, all the right pieces would have to be present to make such a determination” (1994:105). Indeed, in her attempt to evaluate archaeological material culture in light of basketry identified as ethnographic Paiute in museum collections, she argues that “coiled basketry is not a fully fixed or consistent feature among Numic-speaking peoples,” and she concludes that, lacking exceptional circumstances, “it is probably not an ethnic marker” (1994:112). While this is likely not a universal view, it is an apt caution in the present case; given the fragmentary nature of the
present assemblage, lacking starts, finishes, and decorative elaborations, and considering the exceptional diversity exhibited in the small sample of Oregon coiled basketry, it is possible to find resemblances to a great many coiling traditions but challenging to see clear and indisputable relationships to any.

This fact, coupled with the reality that—in light of the recent radiocarbon dating—we can no longer treat these pieces as a contemporary and coherent late prehistoric/protohistoric set, means that it is time to pry open the door of other possibilities. What do we now know? We know that coiled basketry is present, but rare, in the Northern Great Basin. In contrast to prior assumptions, we now know that this ephemeral presence has persisted in the region for more than 2,500 years (Figure 3). Its occurrence is not concentrated in the late prehistoric period; it is a minor—but consistent—presence over nearly three millennia.

This pattern of occurrence is not what would be expected in the case of a population incursion or replacement that would have affected the Northern Great Basin within the last millennium, as the Numic expansion model suggests. The low frequency of occurrence suggests that the Northern Great Basin of southeast Oregon was at the periphery of the sphere of influence of coiled basket makers, and this persistent, if ephemeral, presence of coiling suggests long-term stability.

Regarding the geography of coiling in the Northern Great Basin, its distribution in southeast Oregon suggests a primarily eastern, as opposed to a southern, source of influence. It is found primarily in the Owyhee and adjacent Catlow basins, the former a Snake River tributary draining to southern Idaho to the east.

The far northwestern basins of the Northern Great Basin are linked to western Nevada through a chain of relatively better-watered valleys along the foot of the Cascade–Sierra ranges. These relationships may be most clearly indicated by the presence of marine shell beads from the southern California coast that probably reached Oregon’s Fort Rock Basin via this corridor (Jenkins and Erlandson 1996; Jenkins et al. 2004; Raab and Howard 2000; Vellanoweth 1995, 2001). Twineware forms and decorative techniques between the Northern and Western Basin areas are largely parallel (Adovasio 1986b:197) and may have been traded between these regions (Fowler and Hattori 2011; Hattori and Fowler 2009), and forms such as Multiple Warp sandals are common to both (Connolly and Barker 2008). These are the links that Jolie and Hattori (2005) rely on to suggest that coiling in the Northern Great Basin derives from a southern, rather than an easterly, source.

However, the geography of known occurrences of coiling does not strongly support this view. Coiling is entirely absent from the more
westerly Fort Rock, Summer Lake, Chewaucan, Klamath, and Goose Lake basins (Figure 4). It may be significant that the single specimen known from west of Catlow Valley is pericontact in age; postdates the reintroduction of the horse, when long-distance trading and raiding were widespread and ancient relationships were disrupted; and may not be representative of the predominant social geography of previous millennia. The absence of coiled basketry in the far northwestern Great Basin argues against the Western Great Basin as a principal point of origin. These far northwestern basins appear to have been part of a social sphere that was somewhat independent of the basins to the east (Harney, Catlow, Malheur, Owyhee), with the latter apparently more closely linked to the east and southeast.

The easterly influence could derive from the central or Eastern Great Basin and/or from the Snake River Plain of southern Idaho (cf. Cress-
Late presence of coiling in the Northern Great Basin was assumed; the number of specimens was few, the recovery contexts were consistently reported to be late, and the one reported direct fiber age estimate on coiled basketry from this region served to reinforce the assumed ages of the other specimens. Clearly, these assumptions were wrong. The lesson is that museum collections offer much potential for the testing of archaeologically hypotheses, and continued dating of these collections is an important element of that inquiry.

Acknowledgments. Funding for radiocarbon dating was provided by the Lakeview District (Oregon) Bureau of Land Management through the efforts of Bill Cannon, district archaeologist, and by the Betty Soreng Research Fund from the University of Oregon Museum of Natural and Cultural History. The intellectual support, challenges, cooperation, and opportunities provided by Bill Cannon, Kay Fowler, Gene Hatiori, Pat Barker, Jim Adovasio, Ed Jolie, Dennis Jenkins, the School for Advanced Research, and the National Science Foundation are gratefully acknowledged. Specimen sampling was facilitated by Pamela Endzweig, director of anthropological collections, and Elizabeth Kallenbach, anthropological collections manager, for the University of Oregon Museum of Natural and Cultural History/State Museum of Anthropology. I thank Chantel Saban for the Spanish abstract translation.

References Cited

Adovasio, James M.

Adovasio, James M., and R. L. Andrews

Adovasio, James M., R. L. Andrews, and R. C. Carlisle
1986 Basketry. In Perishable Industries from Dirty Shame Rockshelter, Malheur County, Oregon, by R. L. Andrews,

Plager, Sharon, Mark G. Plew, and Christopher A. Willson 2006 The Archaeology of Antelope Creek Overhang, Southeastern Oregon. Monographs in Archaeology Vol. 2. Department of Anthropology, Boise State University, Boise.

Submitted August 24, 2012; Revised October 31, 2012; Accepted November 1, 2012.